Prediction of dopant ionization energies in silicon: The importance of strain

نویسندگان

  • A. Rockett
  • D. D. Johnson
  • S. V. Khare
  • B. R. Tuttle
چکیده

Based on a hydrogenic state and strain changes upon defect charging, we propose a simple, parameter-free model that agrees well with the observed group III and V monovalent-impurity ionization energies in Si, revealing the importance of such strain effects. Changes in lattice strain upon defect charging are obtained via superposition and elasticity theory using atomic relaxations from density functional theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Investigation, Proton and Electron Affinities, Gas Phase Basicities, and Ionization Energies of Captopril

Captopril is one of the most significant angiotensin-converting enzyme inhibitors. In spite of numerous experimental and computational studies on its properties, not enough geometrical and thermodynamic data is available on this compound. So, this study aimed to investigate the structural properties and assignment of possible conformers of captopril in the gas-phase. To this end, 1152 unique tr...

متن کامل

Implementation of EIS for dopant profile analysis in n-type silicon

An experimental setup has been developed for successive photo-electrochemical etch and EIS measurement of semiconductor samples. Furthermore an algorithm based on electrochemical capacitance-voltage (ECV) has been developed for calculating dopant profile based on the measurements by developed setup. Phosphorous diffusion profile in p-type silicon was estimated by employing developed setup and a...

متن کامل

Single-donor ionization energies in a nanoscale CMOS channel.

One consequence of the continued downward scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations in the number of these dopants are already a major issue in the microelectronics industry. Although single dopant signatures have been observed at low temperatures, the impact on transistor performance of a single dopant atom at room temperat...

متن کامل

Density Functional Theory Studies of Defects in the (5,5) Silicon Nanotube

We have performed density functional theory (DFT) calculations to investigate the properties of defect in arepresentative armchair model of silicon nanotubes (SiNTs). To this aim, the structures of pristine and defective(5,5) SiNTs have been optimized and the properties such as bond lengths, total energies, binding energies,.formation energies, gap energies, and dipole moments have been evaluat...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003